导航菜单

纳米金-生物技术革命性产品

2019-09-04 17:43 工业快讯 11 次阅读
Nanoprobes公司的纳米金产品•EnzMetTM- 新 ...

Nanoprobes公司的纳米金产品

•EnzMetTM- 新的生物标记和染色方法(Nanoprobe研发的产品),使用酶探针选择性的将银沉积在目标位置,可替代HRP底物。

应用:可替代HRP底物,用于原位杂交/免疫组化/电镜/关联显微系统/免疫斑点/蛋白杂交等

优点:染色清晰度优于传统生色或荧光底物,*不褪色,不扩散

可检测内源单拷贝基因(原位杂交中)!超高灵敏度

高分辨率

背景接近零

无需更多处理,染色即在电镜下可见

免疫组化:DAB(左)EnzMet (右)染HER2扩增的组织

品名

产品描述

货号

规格

EnzMet™ IHC / ISH HRP Detection Kit

专为免疫组化和原位杂交优化的HRP检测试剂盒

6001

150张载玻片

30ml

EnzMet™ Western Blot HRP Detection Kit

在蛋白杂交中获得zui高灵敏度的EnzMet

6002

100ml

EnzMet™ for General Research Applications

普通实验用的EnzMet

6010

45ml

References:

1. J. F. Hainfeld, et al.,Microsc. Microanal.8(Suppl.2) (2002) 916 CD.

2. R. Tubbs, J. Pettay, et al.J. Mol. Histol.35(2004) 589.

3. R. Tubbs, J. Pettay, J., et al.Appl. Immunohistochem. Mol. Morphol.13(2005) 371.

4. A. Cali & P. M. Takvorian,Southeast Asian Trop. Med. Public Health,35(Suppl.1) (2004) 58.

5. A. Cali, L. M. Weiss, and P. M. Takvorian,J. Euk. Microbiol.,49(2003) 164.

6. E.M. Keohane, G.A. Orr, et al.,Mol. Biochem. Parasitol.,94(1998) 227. This work was supported by NIH SBIR grant 2R44 GM064257-02A1 and NIH grant 2R01 AI031788. The authors thank Ventana Medical Systems, Incorporated for the I-View reagent.

•Ni-NTA纳米金–特异性结合his标签蛋白,用于标记his标签蛋白:

应用:透射电镜/扫描透射电镜、光学显微镜、蛋白杂交、纯化his标签蛋白时,识别含目的蛋白的部分等实验。

优点:灵敏度高

探针小,分辨率高,1.8 nm Ni-NTA-纳米金比抗体探针小

高溶解度,稳定

无背景

*染色

5 nm Ni-NTA-纳米金在电镜下可见,不需金增强/银增强

使用简单

左:1.8nm Ni-NTA-纳米金与his标签蛋白相互作用右:用Ni-NTA-纳米金标记6xhis腺病毒Knob蛋白,未染色的扫描电镜照片

left: Structure of Ni-NTA-Nanogold®showing interaction with Interaction with a His-tagged protein;right: Knob protein from adenovirus cloned with 6x-His tag, labeled with Ni-NTA-Nanogold, column purified from excess gold, and viewed in the scanning transmission electron microscope (STEM) unstained (Full width approximay 245 nm).

上:5nm Ni-NTA-纳米金的结构,显示金属螯合物与his标签蛋白结合

下:5nm Ni-NTA-纳米金的扫描电镜图,平均直径5.11±0.84nm

Top: Structure of NTA-Ni(II)-5 nm Nanogold®, showing the binding of the incorporated metal chelate to a His-tagged protein; distance from the gold particle surface to the His tag is estimated to be 1.5 nm.Above: Transmission electron micrograph of 5 nm NTA Nanogold: average diameter 5.11±0.84nm.

品名

产品描述

货号

规格

1.8 nm Ni-NTA-Nanogold®

比抗体小,更易渗透入组织,定位和检测细胞、组织或蛋白复合物中的his标签蛋白。

2080

10uM 30ml

5 nm Ni-NTA-Nanogold®

目标量达一定程度时,无需银增强/金增强可直接用电镜观察

2082

0.5uM 3ml

相关产品:

GoldEnhance LM/Blot (GELM)

金增强试剂,用于光镜样品

2112

Initiator/Moderator/Activator/Buffer

各15 ml(共60 ml,足够做600张载玻片)

GoldEnhance EM(GEEM)

金增强试剂,用于电镜样品

2113

Initiator/Moderator/Activator/Buffer

各2 ml(共8 ml,足够做200个网格)

HQ Silver

用于纳米金的质量zui佳的增强试剂,均匀显影,极好的保持结构,特别适合电镜,光敏感

2012

Initiator/Moderator/Activator

各15 ml(共45 ml)

Li Silver

纳米金的银增强,用于电镜、光镜、凝胶、杂交,光不敏感

2013

Initiator/Enhancer

125 ml (共250 ml)

References:

1.Kollman, J. M.; Zelter, A.; Muller, E. G.; Fox, B.; Rice, L. M.; Davis, T. N., and Agard, D. A.: The Structure of the gamma-Tubulin Small Complex: Implications of Its Architecture and Flexibility for Microtubule Nucleation.Mol. Biol. Cell,19, 207-215 (2008).

2. Adami, A.; Garcia-Alvarez, B.; Arias-Palomo, E.; Barford, D., and Llorca, O.: Structure of TOR and its complex with KOG1.Mol. Cell.,27509-516 (2007).

3. Balasingham, S. V.; Collins, R. F.; Assalkhou, R.; Homberset, H.; Frye, S. A.; Derrick, J. P., and Tonjum, T.: Interactions between the Lipoprotein PilP and the Secretin PilQ in Neisseria meningitidis.J. Bacteriol.,189, 5716-5727 (2007).

4. Jiang, Z. G.; Simon, M. N.; Wall, J. S., and McKnight, C. J.: Structural analysis of reconstituted lipoproteins containing the N-terminal domain of apolipoprotein B.Biophys. J.,92, 4097-4108 (2007).

5. Pye, V. E, Beuron, F, Keetch, C. A, McKeown, C, Robinson, C. V, Meyer, H. H, Zhang, X, and Freemont, P. S.: Structural insights into the p97-Ufd1-Npl4 complex.Proc. Natl. Acad. Sci. USA,104, 467-472 (2007).

6. Promnares, K.; Komenda, J.; Bumba, L.; Nebesarova, J.; Vacha, F., and Tichy, M.: Cyanobacterial Small Chlorophyll-binding Protein ScpD (HliB) Is Located on the Periphery of Photosystem II in the Vicinity of PsbH and CP47 Subunits.J. Biol. Chem.,281, 32705-32713 (2006).

7. Collins, R. F.; Beis, K.; Clarke, B. R.; Ford, R. C.; Hulley, M.; Naismith, J. H.; and Whitfield, C.: Periplasmic protein-protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules.J. Biol. Chem.,281, 2144-2150 (2006).

8. Wolfe, C. L.; Warrington, J. A.; Treadwell, L., and Norcum, M. T.: A three-dimensional working model of the multienzyme complex of aminoacyl-tRNA synthetases based on electron microscopic placements of tRNA and proteins.J. Biol. Chem.,280, 38870-38878 (2005).

9. Bumba, L.; Tichy, M.; Dobakova, M.; Komenda, J., and Vacha, F.: Localization of the PsbH subunit in photosystem II from the Synechocystis 6803 using the His-tagged NiNTA Nanogold labeling.J. Struct. Biol.,152, 28-35 (2005)

10. Collins, R. F.; Frye, S. A.; Balasingham, S.; Ford, R. C.; Tonjum, T., and Derrick, J. P.: Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ.J. Biol. Chem.,280, 18923-18930 (2005).

11. Chatterji, A.; Ochoa, W. F.; Ueno, T.; Lin T., and Johnson, J. E.: A virus-based nanoblock with tunable electrostatic properties.Nano Lett.,5, 597-602 (2005).

12. Buchel, C.; Morris, E.; Orlova, E., and Barber, J.: Localisation of the PsbH subunit in photosystem II: a new approach using labelling of His-tags with a Ni(2+)-NTA gold cluster and single particle analysis.J. Mol. Biol.,312, 371-379 (2001).

13. Hainfeld, J. F.; Liu, W.; Halsey, C. M. R.; Freimuth, P., and Powell, R. D.: Ni-NTA-Gold Clusters Target His-Tagged Proteins.J. Struct. Biol.,127, 185-198 (1999).

14. Hainfeld, J. F.; Liu, W.; Joshi, V., and Powell R. D.: Nickel-NTA-Nanogold Binds his-Tagged Proteins.Microsc. Microanal.,8,(Suppl. 2: Proceedings) (Proceedings of Microscopy and Microanalysis 2002);Voekl, E.; Piston, D.; Gauvin, R.; Lockley, A. J.; Bailey, G. W., and McKernan, S., Eds.; Cambridge University Press, New York, NY, 2002, p. 832CD.

GoldiBlot™ HIS Western Blot Kit:Ni-NTA-纳米金颗粒

应用:

1.蛋白杂交检测带his标签的重组蛋白(染色时间1小时)

2.识别细胞裂解液或提取物中的his标签蛋白

3.证实转染细胞中his标签蛋白的表达

优点:更快更灵敏

低背景

*信号

品名

产品描述

货号

规格

GoldiBlot™ HIS Western Blot Kit

用于在蛋白杂交中检测his重组蛋白的

2090

15个杂交

References:

Dubendorff, J.; Cruz, M.; Gonzalez, C.; Hainfeld, J.; Liu, W.: Rapid Detection of His-tagged Proteins on Western BlotsProc. 47th Ann. Mtg., Amer. Soc. Cell Biol.,47; Pres. # 1918., poster # B265 (2007).

•金纳米颗粒:3-5nm/2-4nm/0.8nm/1.4nm, 带正电/负电/不带电荷,溶于两性/亲水/疏水溶剂的化学功能化纳米金颗粒,用带化学基团的不同配基包被和稳定,溶解性不同

应用:在多种系统和环境中的应用广泛

品名

产品描述

货号

规格

1-Mercapto-(triethylene glycol) methyl ether functionalized gold nanoparticles

两性3 - 5 nm纳米金颗粒,溶于甲苯、氯仿、乙酸乙酯、丙酮、水、乙醇等溶剂

3012

80 mg

(1-Mercaptoundec-11-yl) tetraethyleneglycol functionalized gold nanoparticles

亲水3 - 5 nm纳米金颗粒,溶于乙醇、水

3013

80 mg

Dodecanethiol functionalized gold nanoparticles

疏水3 - 5 nm纳米金,用于甲苯等有机溶剂

3014

80 mg

Octanethiolfunctionalized gold nanoparticles

疏水2 - 4 nm纳米金,用于甲苯等有机溶剂

3015

80 mg

•AuroVistTM:X-射线造影剂

优点:

    用于活体,不破坏组织低毒性高对比度,比碘造影剂高3倍显微CT可成像直径为20um的血管1.9nm纳米金在血液中存留时间比碘造影剂长使用浓度可比碘造影剂高4倍多高浓度时渗透压低低粘度,可注射肾脏将其清除

Live mouse 1 hour after injection with AuroVist™, showing kidney contrast and fine structure (bar = 1 mm).(upper): Live mouse, 2 minutes after injectionshowing vascular fine structure; (lower) MicroCT ofmouse inferior vena cava (bar = 1mm).

品名

产品描述

货号

规格

AuroVistTM-1.9nm

在水、PBS或其他缓冲液中即溶

1102

40 mg Au

AuroVistTM-15nm

产品已溶于PBS,并经0.22 um 膜过滤

1115

40 mg Au

References:

MicroCT Imaging

1.Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M, and Smilowitz, H. M.: Gold nanoparticles: a new X-ray contrast agent.Br. J. Radiol.,79, 248-253 (2006).

In VivoVascular Casting

1.Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M., and Smilowitz, H. M.: In Vivo Vascular Casting.Microsc. Microanal.,11, (Suppl. 2: Proceedings); Price, R.; Kotula, P.; Marko, M.; Scott, J. H.; Vander Voort, G. F.; Nanilova, E.; Mah Lee Ng, M.; Smith, K.; Griffin, P.; Smith, P., and McKernan, S., Eds.; Cambridge University Press, New York, NY, p. 1216CD (2005).

Radiation Therapy Enhancement

1.Hainfeld, J. F., Slatkin, D. N., and Smilowitz, H. M.: The use of gold nanoparticles to enhance radiotherapy in mice.Phys. Med. Biol.,49, N309-N315 (2004).

•纳米金结合物:

1.共价结合了Fab’/IgG/链酶亲和素的纳米金,是zui小的免疫金标探针,优于胶体金

应用:市场上zui小的免疫金标探针

优点:

金颗粒与Fab’或IgG比例接近1

粒径小(1.4nm),且均匀

低背景

灵敏度高

稳定

品名

产品描述

货号

规格

Nanogold-链酶亲和素

2016

0.5ml

1ml

Nanogold-山羊抗生物素

IgG

2015

0.5ml

1ml

Nanogold-山羊抗小鼠IgG

IgG

2001

0.5ml

1ml

Fab’

2002

0.5ml

1ml

Nanogold-山羊抗兔IgG

IgG

2003

0.5ml

1ml

Fab’

2004

0.5ml

1ml

Nanogold-兔抗山羊IgG

IgG

2005

0.5ml

1ml

Fab’

2006

0.5ml

1ml

Nanogold-山羊抗大鼠IgG

IgG

2007

0.5ml

1ml

Fab’

2008

0.5ml

1ml

Nanogold-兔抗绵羊IgG

IgG

2050

0.5ml

1ml

Fab’

2051

0.5ml

1ml

Nanogold-山羊抗人IgG

IgG

2052

0.5ml

1ml

Fab’

2053

0.5ml

1ml

Nanogold-山羊抗豚鼠IgG

IgG

2054

0.5ml

1ml

Fab’

2055

0.5ml

1ml

用CARD扩增的纳米金增强检Hela细胞中单个拷贝HPV16的原位杂交

扫描透射电镜图片

(左)羊抗小鼠胶体金 (右)羊Fab’抗小鼠纳米金

References:

Nanogold® Antibody Conjugates

1.Bendayan, M.: Worth its weight in gold.Science,291, 1363-5 (2001).

2.Bergles, D. E.; Roberts, J. D. B.; Somogyi, P., and Jahr, C. E.: Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus.Nature,405, 187-190 (2000).

3.D’Este, L.; Kulaksiz, H.; Rausch, U.; Vaccaro, R.; Wenger, T.; Tokunaga, Y.; Renda, T. G.; Cetin, Y.: Expression of guanylin in "pars tuberalis-specific cells" and gonadotrophs of rat adenohypophysisProc. Natl. Acad. Sci. USA,97, 1131-1136 (2000).

4.Feng, D.; Nagy, J. A.; Brekken, R. A.; Pettersson, A.; Manseau, E. J.; Pyne, L.; Mulligan, R.; Thorpe, P. E.; Dvorak, H. F., and Dvorak, A. M.: Ultrastructural localization of the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) receptor-2 (FLK-1, KDR) in normal mouse kidney and in the hyperpermeable vessels induced by VPF/VEGF-expressing tumors and adenoviral vectorsJ. Histochem. Cytochem.,48, 545-555 (2000).

5.Grondin, G., and Beaudoin, A. R.: A New Pre-Embedding Immunogold Method that Permits to Obtain a Very High Signal with a Very Good Ultrastructure.Microsc. Microanal., 7, (Suppl. 2: Proceedings) (Proceedings of the Fifty-Ninth Annual Meeting, Microscopy Society of America);Bailey, G. W.; Price, R. L.; Voelkl, E., and Musselman, I. H., Eds.; Springer-Verlag, New York, NY,2001, pp. 1044-1045.

6.Hainfeld, J. F.: Labeling with Nanogold and undecagold: techniques and results.Scanning Microsc. Suppl. (Proc. 14thPfefferkorn Conf.); Malecki, M., and Roomans, G. M. (Eds.). Scanning Microscopy International, Chicago, IL,10, 309-322 (1996).

7.Ikeda, Y.; Martone, M.; Gu, Y.; Hoshijima, M.; Thor, A.; Oh, S. S.; Peterson, K. L., and Ross, J., Jr.: Altered membrane proteins and permeability correlate with cardiac dysfunction in cardiomyopathic hamstersAm. J. Physiol. Heart Circ. Physiol.,278, H1362-H1370 (2000).

8.Kohler, A.; Lauritzen, B., and Van Noorden, J. F.: Signal amplification in immunohistochemistry at the light microscopic level using biotinylated tyramide and Nanogold-silver stainingJ. Histochem. Cytochem.,48, 933-941 (2000).

9.Malecki, M.: Preparation of plasmid DNA in transfection complexes for fluorescence and spectroscopic imaging.Scanning Microsc. Suppl. (Proc. 14thPfefferkorn Conf.); Malecki, M., and Roomans, G. M. (Eds.). Scanning Microscopy International, Chicago, IL,10, 1-16 (1996).

10.Robinson, J. M.; Takizawa, T., and Vandré, D. D.: Applications of gold cluster compounds in immunocytochemistry and correlative microscopy: comparison with colloidal gold.J. Microsc.,199, 163-79 (2000).

11.Robinson, J. M.; Takizawa, T., and Vandré: Enhanced immunolabeling efficiency using ultrasmall immunogold probes: ImmunocytochemistryJ. Histochem. Cytochem.,48, 487-492 (2000).

12.Sawada, H., and Esaki, M.: A practical technique to postfix Nanogold-immunolabeled specimens with osmium and to embed them in Epon for electron microscopyJ. Histochem. Cytochem.,48, 493-498 (2000).

13.Tolstonog, G. V.; Sabasch, M., and Traub, P.: Cytoplasmic Intermediate Filaments Are Stably Associated with Nuclear Matrices and Potentially Modulate Their DNA-Binding Function.DNA Cell Biol.,21, 213-39 (2002).

14.Yang, R.; Tabata, S.; Crowley, H. H.; Margolskee, R. F., and Kinnamon, J. C.: Ultrastructural localization of gustducin immunoreactivity in microvilli of type II taste cells in the rat.J. Comp. Neurol.,11, 139-151 (2000).

15.Yoshimori, T.; Yamagata, F.; Yamamoto, A.; Mizushima, N.; Kabeya, Y.; Nara, A.; Miwako, I.; Ohashi, M.; Ohsumi, M., and Ohsumi, Y.: The Mouse SKD1,a homologue of yeast Vps4p, is required for normal endosomal trafficking and morphology in mammalian cellsMol. Biol. Cell,11, 747-763 (2000).

16.Zirwes, R. F.; Eilbracht, J.; Kneissel, S., and Schmidt-Zachmann, M. S.: A novel helicase-type protein in the Nucleolus: protein NOH61Mol. Biol. Cell,11, 1153-1167 (2000).

17.Ackerly, C. A., Becker, L. E., Tilups, A., Rutlka, J. T., and Mancuso, J. F.: CCD Cameras facilitate the imaging of small gold particles in immunogold-labelled ultrathin cryosections. InProc 54th Ann. Mtg. Micros. Soc. Amer.,G. W. Bailey, J. M. Corbett, R. V. W. Dimlich, J. R. Michael and N. J., Zaluzec (Eds.). San Francisco Press, San Francisco, CA, pp. 904-905 (1996).

18.Adams, I. R., and Kilmartin, J. V.: Localization of core spindle body (SPB) components during SPB duplication inSaccharomyces cerevisiae.J. Cell Biol.,145, 809-823 (1999).

19.Aoki, T.; Hagiwara, H., and Fujimoto, T.: Peculiar Distribution of Fodrin in Fat-Storing Cells;Exp. Cell. Res.,234, 313-320 (1997).

20.Baude, A.; Nusser, Z.; Molnar, E.; McIlhinney, R. A. J., and Somogyi, P.: High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus.Neuroscience,69, 1031-1055 (1995).

21.Baude, A., Nusser, A., Roberts, J.D.B., Mulvihill, E., McIlhinney, R.A.J., and Somogyi, P. The metabotropic glutamate receptor (mGluR1 a) is concentrated at perisynaptic membranes of neuronal subpopulations as detected by immunogold reaction.Neuron,11, 771-787 (1993).

22.Bernard, V.; Levey, A. I., and Bloch, B.: Regulation of the subcellular distribution of m4 muscarinic acetylcholine receptors in striatal neuronsin vivoby the cholinergic environment: evidence for regulation of cell surface receptors by endogenous and exogenous stimulationJ. Neurosci.,19, 10237-10249 (1999).

23.Bernard, V.; Somogyi, P., and Bolam, J. P.: Cellular, subcellular and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat.J. Neuroscience,17, 819-833 (1997).

24.Boisset, N. et al. Electron Microscopy of alpha-2- Macrogolobulin with a thiol ester bound ligand.J. Struct. Biol.,108, 221-226 (1992).

25.Braig, K., Simon, M., Furuya, F., Hainfeld, J.F., and Horwich, A.L. A polypeptide bound by the chaperonin groEL is localized within a central cavity.Proc. Natl. Acad.Sci.,90, 3978-3982 (1993).

26.Burry, R.W., Vandrée, D. D., and Hayes, D. M.: Silver enhancement of gold antibody probes in pre-embedding electron microscopic immunocytochemistry.J. Histochem. Cytochem.,40, 1849-1856 (1992).

27.Du, J.; Tao-Cheng, J.-H.; Zerfas, P., and McBain, C. J. The K+ channel, Kv2.1, is apposed to astrocytic processes and is associated with inhibitory postsynaptic membranes in hippocampal and cortical principal neurons and inhibitory interneurons.Neuroscience,84, 37-48 (1998).

28.Fagotto, F.; Jho, E.-H.; Zeng, L.; Kurth, T.; Joos, T.; Kaufmann, C., and Constantini, F.: Domains of axin involved in protein-protein interactions, Wnt pathway inhibition, and intracellular localization.J. Cell Biol.,145, 741-756 (1999).

29.Gardiol, A., Racca, C., and Triller, A.: Dendritic and Postsynaptic Protein Synthetic Machinery.J. Neuroscience,19, 168-179 (1999).

30.Gregori, L., Hainfeld, J. F., Simon, M. N., and Goldgaber, D. Binding of amyloid beta protein to the 20S proteasome.J. Biol. Chem.,272, 58-62 (1997).

31.Gilerovitch, H.G., Bishop, G.A., King, J.S., and Burry, R.W. Demonstration of GAD in Purkinje-cell terminals with silver enhanced gold immunocytochemistry. In G. Bailey and C.L. Rieder (Eds.),Proc. 51st Ann. Mtg. Micros. Soc. Amer.,San Francisco Press, pp. 288-289 (1993).

32.Gilerovitch, H.G., Bishop, G.A., King, J.S., and Burry, R.W. The use of electron microscopic immunocytochemistry with silver-enhanced 1.4nm gold particles to localize GAD in the cerebellar nuclei.J. Histochem. Cytochem.,43, 337-43 (1995).

33.Griffing, L. R., Villanueva, M. A., Taylor, J., and Moon, S.: Confocal Epipolorization Microscopy of Gold Probes in Plant Cells and Protoplasts;Methods in Cell Biology,49, 109-121 (1995).

34.Gutekunst, C.-A.; Li, S.-H.; Yi, H.;Mulroy, J. S.; Kuemmerle, S.; Jones, R.; Rye, D.; Ferrante, R. J.; Hersch, S. M., and Li, X.-J.: Nuclear and Neuropil Aggregates in Huntington’s Disease: Relationship to Neuropathology.J. Neuroscience,19, 2522-2534 (1999).

35.Hainfeld, J.F. Site specific cluster labels.Ultramicroscopy,46, 135-144 (1992).

36.Hainfeld, J. F., and Furuya, F. R.: Silver-enhancement of Nanogold and undecagold: inImmunogold-Silver Staining: Principles, Methods and Applications,"M. A. Hayat (Ed.); CRC Press, Boca Raton, FL, 1995, pp. 71-96.

37. Hainfeld, J.F. and Furuya, F.R. A 1.4nm Gold cluster covalently attached to antibodies improves immunolabeling,J. Histochem. Cytochem.,40, 177-184 (1992).

38. Hainfeld, J. F., and Powell, R. D.: Nanogold Technology: New Frontiers in Gold Labeling.Cell Vision,4, 408-432 (1997).

39. Halasy, K.; Buhl, E. H.; Lörinczi, Z.; Tamás, G., and Somogyi, P: Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus.Hippocampus,6, 306-329 (1996).

40. Hanson, J. E., and Smith, Y.: Group I metabotropic glutamate receptors at GABAergic synapses in monkeys;J. Neurosci.,19, 6488-6496 (1999).

41. Hearne, C. E.; Johnson, D. L., and Van Campen, H.: Immunogold-Silver Staining (IGSS) of (NCP and CP) BVDV-infected subcellular fraction bands; InProc 55th Ann. Mtg. Micros. Soc. Amer.,G. W. Bailey, R. V. W. Dimlich, K. B. Alexander, J. J. McCarthy and T. P. Pretlow (Eds.). Springer-Verlag, New York, NY, pp. 155-156 (1997).

42. Hearne, C. E., and Van Campen, H.: Immunogold-Silver Staining (IGSS) of agarose embedded (NCP) BVDV-infected cell suspensions; InProc 54th Ann. Mtg. Micros. Soc. Amer.,G. W. Bailey, J. M. Corbett, R. V. W. Dimlich, J. R. Michael and N. J., Zaluzec (Eds.). San Francisco Press, San Francisco, CA, pp. 902-903 (1996).

43. Hermann, R., Walther, P., and Muller, M.: Immunogold labeling in scanning electron microscopy;Histochem. Cell Biol.,106, 31-39 (1996).

44. Humbel, B. M.; De Jong, M. D. M.; Müller, W. H., and Verkleij, A. J.: Pre-embedding immunolabeling for electron microscopy: An evaluation of permeabilization methods and markers.Microsc. Res. Tech.,42, 43-58 (1998).

45. Humbel, B. M.; Sibon, O. C. M.; Stierhof, Y.-D., and Schwarz, H.: Ultra-small gold particles and silver enhancement as a detection system in immunolabeling and In Situ hybridization experiments;J. Histochem. Cytochem.,43, 735-737 (1995).

46. Kloboucek, A.; Behrisch, A.; Faix, J., and Sackmann, E.: Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study.Biophys. J.,77, 2311-2328 (1999).

47. Krenács, T., and Krenács, L.: Immunogold-silver staining (IGSS) for single and multiple antigen detection in archived tissues following antigen retrieval.Cell Vision,4, 387-393 (1997).

48. Krenács, T. and Dux, L. Silver-enhanced immunogold labeling of calcium-ATPase in sarcoplasmic reticulum of skeletal muscle.J. Histochem. Cytochem.,42, 967-968 (1994).

49. Lackie, P. M.: Immunogold silver staining for light microscopy;Histochem. Cell. Biol.,106, 9-17 (1996).

50. Larrson, L.-I.: Immunogold labeling of neuroendocrine peptides with special reference to antibody specificity and multiple staining techniques [review];Histochem. Cell. Biol.,106, 93-103 (1996).

51. Li, H.; Ohishi, H.; Kinoshita, A.; Shigemoto, R.; Nomura, S., and Mizuno, N.: Localization of a metabotropic glutamate receptor, mGluR7, in axon terminals of presumed nociceptive, primary afferent fibers in the superficial layers of the spinal dorsal horn: an electron microscope study in the rat.Neuroscience lett.,223, 153-156 (1997).

52. Li, S.-H.; Cheng, A. L.; Li, H., and Li, X.-J.: Cellular effects and altered gene expression in PC12 cells stably expressing mutant huntingtin.J. Neuroscience,19, 5159-5172 (1999).

53. Lipschitz, D. L., and Michel, W. C.: Physiological Evidence for the discrimination of L-arginine from structural analogues by the zebrafish olfactory systemJ. Neurophysiol.,82, 3160-3167 (1999).

54. Lujan, R.; Nusser, Z.; Roberts, J. D. B.; Shigemoto R.; Ohishi, H., and Somogyi, P.: Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1-alpha, mGluR1 and mGluR5, relative to neurotransmitter release sites.J. Chem. Neuroanat.,13, 219-241 (1997).

55. Lujan, R.; Nusser, Z.; Roberts, J. D. B.; Shigemoto R., and Somogyi, P.: Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus.Eur. J. Neuroscience,8, 1488-1500 (1996).

56. Matsubara, A., Laake, J. H., Davanger, S., Usami, S.-I., and Otterson, O. P.; Organization of AMPA receptor subunits at a glustamate synapse: A quantitative immunogold analysis of hair cell synapses in the rat organ of Corti.J. Neuroscience,16, 4457-4467 (1996).

57. Matsuzaki, T.; Suzuki, T.; Koyama, H.; Tanaka, S., and Takata, K.: Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss.J. Histochem. Cytochem.,47, 1275-1286 (1999).

58. Mizoguchi, A.; Yano, Y.; Hamaguchi, H.; Yanagida, H.; Ide, C.; Zahraoui, A.; Shirataki, H.; Sasaki, T., and Takai, Y.: Localization of Rabphilin-3A on the synaptic vesicle.Biochem. Biophys. Res. Commun,202, 1235-1243 (1999).

59. Nixon, G. F., Mignery, G. A., and Somlyo, A. V.: Immunogold localization of inositol 1,4,5-trisphosphate receptors and characterization of ultrastructural features of the sarcoplasmic reticulum in phasic and tonic smooth muscle;J. Muscle Res. Cell Mot.,15, 682-700 (1994).

60. Nusser, Z.; Cull-Candy, S., and Farrant, M.; Differences in synaptic GABAAreceptor number underlie variation in GABA mini amplitude;Neuron,19, 697-709 (1997).

61. Nusser, Z.; Hajos, N.; Somogyi, P., and Mody, I.: Increased number of synaptic GABAAreceptors underlies potentiation at hippocampal inhibitory synapses;Nature,395, 172-177 (1998).

62. Nusser, Z.; Mulvihill, E.; Streit, P., and Somogyi, P.: Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization.Neuroscience,61, 421-427 (1994).

63. Nusser, Z.; Roberts, J. D. B.; Baude, A.; Richards, J. G., and Somogyi, P. Relative densities of synaptic and extrasynaptic GABA-A receptors on cerebellar granule cells as determined by a quantitative immunogold method.J. Neuroscience;15, 2948-2960 (1995).

64. Nusser, Z.; Roberts, J. D. B.; Baude, A.; Richards, J. G.; Sieghart, W., and Somogyi. P. Immunocytochemical localization of the alpha-1 and beta-2/3 subunits of the GABA-A receptor in relation to specific GABAergic synapses in the dentate gyrus.Eur. J. Neurosci.,7, 630-646 (1995).

65. Nusser, Z.; Sieghart, W.; Benke, D.; Fritschy, J.-M., and Somogyi, P.: Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells.Proc. Natl. Acad. Sci. USA,93, 11939-11944 (1996).

66. Nusser, Z., Sieghart, W., and Somogyi, P.: Segregation of different GABAAreceptors to synaptic and extrasynaptic membranes of cerebellar granule cells.J. Neuroscience,18, 1693-1703 (1998).

67. Nusser, Z.; Sieghart, W.; Stephenson, F. A., and Somogyi, P.: The alpha-6 subunit of the GABAAreceptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells.J. Neuroscience,16, 103-114 (1996).

68. Nusser, Z., and Somogyi, P.: Compartmentalised distribution of GABAAand glutamate receptors in relation to transmitter release sites on the surface of cerebellar neurones.Prog. Brain Research,(C. I. De Zeeuw, P. Strata and J. Voogd, Eds.), Elsevier, Oxford, UK.;114, 1488-1500 (1997).

69. Pohl, K., and Stierhof, Y.-D.: Action of gold chloride ("Gold toning") on silver-enhanced 1 nm gold markers.Microsc. Res. Tech.,42, 66-79 (1998).

70. Punnonen, E.-L., Fages, C., Wartiovaara, J., and Rauvala, H.: Ultrststructural Localization of beta-Actin and Amphoterin mRNA in Cultured Cells: Application of tyramide signal amplification and comparison of detection methods;J. Histochem. Cytochem.,47, 99 (1999).

71. Robinett, C. C., Straight, A., Li, G., Willhelm, C., Sudlow, G., Murray, A., and Belmont, A. S.: In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition.J. Cell Biol.,135, 1685-1700 (1996).

72.Robinson, J. M., and Takizawa, T.: Novel Labeling methods for EM analysis of ultrathin cryosections. InProc 54th Ann. Mtg. Micros. Soc. Amer.,G. W. Bailey, J. M. Corbett, R. V. W. Dimlich, J. R. Michael and N. J., Zaluzec (Eds.). San Francisco Press, San Francisco, CA, pp. 894-895 (1996).

73.Salas, P. J. I.: Insoluble gamma-tubulin-containing structures are anchored to the apical network of intermediate filaments in polarized CACO-2 epithelial cells.J. Cell Biol.,146, 645-657 (1999).

74.Sawada, H., Sugawara, I., Kitami, A., and Hayashi, M. Vitronectin in the cytoplasm of Leydig cells in the rat testis.Biol. Reprod.,54, 29-35 (1996).

75.Sawada, H., and Esaki, H: Use of Nanogold followed by silver enhancement and gold toning for preembedding immunolocalization.J. Elect. Micro.,43, 361-66 (1994).

76.Shigemoto, R., Kulik, A., Roberts, J. D. B., Ohishi, H., Nusser, Z., Kaneko, T., and Somogyi, P.; Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone.Nature,381, 523-525 (1996).

77.Somogyi, P.; Tamas, G.; Lujan, R., and Buhl, E. H.: Salient features of synaptic organization in the cerebral cortex.Brain Res., Brain Res. Rev.,26113-135 (1999).

78.Soussan, L.; Burakov, M.; Daniels, M. P.; Toister-Achituv, M.; Porat, A.; Yarden, Y., and Elazar, Z.: ERG30, a VAP-33-related protein, functions in protein transport mediated by COPI vesicles.J. Cell Biol.,146, 301-311 (1999).

79.Sun, X.J., Tolbert, L.P. and Hildebrand, J.G. Using laser scanning confocal microscopy as a guide for electron microscopic study: a simple method for correlation of light and electron microscopy.J. Histochem. Cytochem.,43, 329-35 (1995).

80.Suzuki, E., and Hirosawa, K. Immunolocalization of a Drosphila phosphatidylinositol transfer protein (rdgB) in normal andrdgAmutant photoreceptor cells with special reference to the subrhabdomeric cisternae.J. Electron Microsc.,43, 183-189 (1994).

81.Suzuki, Y.; Itakura, M.; Kashiwagi, M.; Nakamura, N.; Matsuki, T.; Sakuta, H.; Naito, N.; Takano, K.; Fujita, T., and Hirose, S.: Identification by differential display of a hypertonicity-inducible inward rectifier potassium channel highly expressed in chloride cells.J. Biol. Chem,274, 11376-11382 (1999).

82.Takizawa, T.: High-resolution Immunocytochemical Labeling of Replicas with Ultrasmall Gold.J. Histochem. Cytochem.,47, 569-573 (1999).

83.Takizawa, T. and Robinson, J.M. Use of 1.4-nm immunogold particles for immunocytochemistry on ultra-thin cryo- sections.J. Histochem. Cytochem.,42, 1615-1623 (1994).

84.Tanner, V. A., Ploug, T., and Tao-Cheng, J.-H. Subcellular localization of SV2 and other secretory vesicle components in PC12 cells by an efficient method of preembedding EM Immunocytochemistry for cell cultures.J. Histochem. Cytochem.,44, 1481-1488 (1996).

85.Tao-Cheng, J.-H. and Tanner, V.A. A modified method of pre-embedding EM immunocytochemistry which improves specificity and simplifies the process for in vitro cells. In G. Bailey and A.J. Garratt-Reed (Eds.),Proc. 52nd Ann. Mtg. Micros. Soc. Amer

当前位置:忽米设备网 > 工业快讯 > 正文
返回顶部
限时免费入驻忽米网
每天分发1000+设备询盘信息
cache
Processed in 0.003746 Second.